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A. Introduction 

Feline leukaemia virus (FeLV) is the aeti­
ological agent of a wide range of neoplas­
tic and degenerative conditions [1]. The 
predominant, naturally occurring, FeLV­
induced tumours are T-cell lymphomas, 
and recently some of the viral events in 
their pathogenesis have been elucidated. 
Both transduction and insertional muta­
genesis of the myc gene are frequent con­
comitants of T-cell transformation by 
FeLY. In addition, a possible role for the 
T -cell antigen receptor gene in leukaemo­
genesis has been revealed with the discov­
ery of an FeLV -mediated transduction of 
the ,B-chain of the T-cell antigen receptor 
[2, 3]. 

In contrast, the viral aetiology of 
myeloid leukaemia has received less atten­
tion. In these studies we have isolated 
a virus complex, FeLV-GM1 from a 
naturally occurring case of myeloid 
leukaemia corresponding to stage M6 in 
the FAB classification. This isolate con­
tained both subgroups A and B of FeLV, 
and on passage into kittens it produced a 
spectrum of myeloproliferative disease 
including myeloid leukaemia. In vitro 
colony assays of bone marrow early ery­
throid precursor (BFU-E) and granulo­
cytic macrophage precursor cells (GM­
CFC) indicated that two stages in the 
development of disease could be recog­
nised. In the first stage, in which no histo-
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pathological abnormalities were ob­
served, there was a gross expansion in the 
GM-CFC compartment. At a later stage 
in those cats that developed myeloid 
leukaemia, large numbers of small clus­
ters were superimposed on a residual 
normal GM-CFC colony pattern. 

FeLV-GM1 contains both subgroup A 
and B components which were not sepa­
rable by endpoint titration. Molecular 
analysis and cloning of the FeLV-GMl 
isolate has revealed that the subgroup B 
component is defective for replication, 
and from recent pathogenesis experi­
ments with cloned viruses it is now evi­
dent that B component was not required 
to induce the early proliferative events. 
However, only in cats inoculated with 
both components has full leukaemia de­
velopment been observed so far. 

We hypothesise that the viral events 
leading to myeloid leukaemia can be di­
vided into two discrete stages. In the first 
stage the virus induces a polyc1onal ex­
pansion of myeloid precursor cells with 
altered response to, and/or production 
of, growth factors. This proliferating cell 
population may now become a target for 
further viral events necessary for com­
plete transformation. 

B. Cellular Events in FeLV -GMt 
Leukaemia 

Initial experiments with FeLV-GM1 in­
volved the passage of virus from the orig­
inal tumour into newborn kittens. Of 30 
cats challenged with this virus 6 died of 
myeloid leukaemia within 8 -40 weeks, 
17 developed aplastic anaemia and 7 re­
mained clinically normal for 1 year. In 
order to characterise the effects of the 
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Table 1. Colony-forming units of bone marrow precursor cells in control and FeLV-GM1 
infected cats 

Cat Status Weeks GM-CFC GM-CFC Pathology 
no. after per 105 bone colony 

infection marrow cells morphology 

1 Control 1.5 65 Normal Normal 
2 Infected 1.5 201 Normal Normal 
3 Infected 1.5 360 Normal Normal 

4 Control 4 48± 4 Normal Normal 
5 Infected 4 6± 2 Normal Preleukaemic 
6 Infected 4 42± 6 Normal Preleukaemic 

7 Control 5 57± 5 Normal Normal 
8 Infected 5 30 Plus 103 clusters Myeloid Leukaemia 
9 Infected 5 200 Plus 103 clusters Myeloid Leukaemia 

10 Control 8 79±11 Normal Normal 
11 Infected 8 13± 2 Plus 103 clusters Myeloid Leukaemia 
12 Infected 8 ND ND Myeloid Leukaemia 

13 Control 20 172± 7 Normal Normal 
14 Infected 20 792±76 Normal Normal 
15 Infected 20 764±11 Normal Normal 

Bone marrow from cats infected with FeLV-GM1 was prepared, plated at densities ranging from 
104 to 105

, and assayed as described elsewhere [7]. Results are expressed as the means ± SD of 
four plates; results without standard deviations are the means of two wells. 

virus on bone marrow precursor cells, ten 
neonatal kittens were infected with ca. 
104 ffulml FeLV-GM1. Starting at 10 
days post-infection and at intervals 
thereafter infected cats with their age­
matched uninfected controls were sam­
pled for the assay of plasma viraemia and 
bone marrow colony-forming cells 
(Table 1). 

Appropriate tissue was examined his­
tologically so that correlations could be 
made between the extent of the disease 
and the pattern of myeloid colony forma­
tion (Table 1 and Fig. 1). As early as 10 
days after infection a dramatic effect on 
the myeloid lineage was noted with a 
three- to six-fold increase in the number 
of GM-CFC colonies. At this stage both 
the morphology of the colonies and the 
histology of the marrow remained nor­
mal. In cats examined at 5 and 8 weeks 
after infection, myeloid leukaemia was 
present. Three of these cats had myeloid 
leukaemia with little differentiation, typi-
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cal of stage Ml disease in the FAB classi­
fication, while a further cat showed clear 
evidence of stage 4, myelomonocytic 
leukaemia. A striking feature of the GM­
CFC colony pattern in all of the 
leukaemia cats examined was the pres­
ence of several thousand small cell clus­
ters which were superimposed on a pat­
tern of few remaining colonies, a finding 
which has been recorded in some human 
patients with acute myeloblastic leu­
kaemia and which is pathognomic for 
that disease [4]. In one of the leukaemic 
cats the morphologically normal GM­
CFC population was expanded about 
four times above the control value while 
in two others (cats 14 and 17) the GM­
CFC colonies were reduced below con­
trol values. The likeliest interpretation of 
these findings is that, in the first stage of 
the disease the virus induces an expan­
sion of the GM-CFC population which is 
eventually replaced by a leukaemic popu­
lation arising from these cells. 
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Fig. 1. Colony-forming units of granulocyte macrophage precursors (GM-CFC) determined at 
varying cell densities of nucleated bone marrow cells in the absence of exogenous colony-stim­
ulating factor. The control values are the means of four cats (± SE). Only colonies with normal 
morphology were scored. Note in this figure cats 8, 9, 15 and 20 correspond to cats 2, 3,9, 14 
and 15 in table 1 

C. Characterisation of FeLV-GMl Virus 

A distinguishing feature of cats that de­
veloped leukaemia following FeLV-GM1 
infection was the presence of both sub­
groups A and B in the plasma. Cats that 
remained clinically normal were usually 
viraemic with subgroup A virus, while 
remaining latently infected with sub­
group B. A temporal association between 
the onset of subgroup B viraemia and 
leukaemia was also observed. In one cat 
9 months post-infection GM-CFC 
colony numbers remained within normal 
limits, and the cat was viraemic with sub­
group A alone. A month later the cat had 
developed myeloid leukaemia and was 
viraemic with both subgroups. However 
this association is complex in that cats 
viraemic with subgroup A alone often 
had titres ofless than 103 ffu/ml, whereas 
cats viraemic with both subgroups had 
titres of ca. 105 ffu/ml. Consequently the 
presence of the B subgroup in plasma 

could have been a consequence of effi­
cient subgroup A replication rescuing the 
B virus from latency. 

In order to resolve the roles of the indi­
vidual components of FeLV-GM1 in dis­
ease induction, we undertook to molecu­
larly clone and analyse the biological 
effects of the subgroup A virus alone and 
the reconstituted A plus B virus complex. 
The subgroup B virus was found to have 
a 1.5-kb deletion with gag-pol and was 
therefore defective for replication. 

In Table 2 the result of OM-CFC 
colony assays plated at limiting dilution 
without exogenous colony-stimulating 
factor are presented for cats infected with 
either subgroup A or subgroup AB. All 
the AB infected cats displayed an expan­
sion ofGM-CFC at 4 weeks, as did three 
of the six subgroup A infected cats, indi­
cating that the subgroup B virus was not 
an absolute requirement for this event. 

At 38 weeks cat 22 developed myeloid 
leukaemia and, as in other leukaemic 
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Table 2. GM-CFC colony formation at limit-
ing dilution 4 weeks after infection 

Cat Virus GM-CFC per 
no. challenge 104 BM cells without 

exogenous CSF 

16 Control 0.7±1.1 
17 AB 10 ±4 
18 AB 12 ±1 
19 AB 11 ±3 
20 AB 14 ±1 
21 AB 18 ±4 
22 AB 16 ±3 
23 AB 15 ±4 

24 Control 1 ±1 
25 A 2 ±O 
26 A 1 ±1 
27 A 3 ±1 
28 A 20 ±3 
29 A 8 ±4 
30 A 16 ±6 

GM-CFC colony numbers of uninfected con­
trol cats and cats infected with molecularly 
cloned FeLV-GM1. Cells were plated at limit­
ing dilution without the addition of exogenous 
CSF. 

cats, a clonal proviral integration pattern 
was observed. 

D. Discussion 

The study of retrovirus-induced leu­
kaemias has been of value in revealing 
the multistage pattern of leukaemogene­
sis and in implicating specific cellular 
genes in haemopoietic transformation. In 
long-term bone marrow cultures Friend 
virus infection permits the establishment 
of autonomously proliferating cell lines 
which may grow independently of exoge­
nous growth factors but respond to dif­
ferentiation factors and are non­
leukaemic in vivo. At a later stage cells 
with only a limited capacity to differenti­
ate develop and these cells are leukaemic 
in vivo and are often aneuploid [5]. These 
observations are para lIe lIed by the in 
vivo experiments with FeLV-GMl in 
which the initial step appears to be an 
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increase in granulocyte macrophage cells 
which have an altered response to CSF. 
This in turn is followed by the develop­
ment of leukaemic cells which do not dif­
ferentiate normally in response to CSF. 

The mechanism responsible for the ini­
tial GM-CFC expansion is not clear. 
Both the rapidity of the expansion and 
the absence of a clonal retroviral integra­
tion pattern suggests that this process is 
polyclonal. Retrovirus infection has been 
associated with enhanced CSF produc­
tion [6], and FeLV infection of feline em­
bryo cells can induce the production of 
factors with burst promoting activity 
(1. Abkowitz, personal communication). 
However, preliminary experiments in 
which marrow from infected cats was 
used as a source of CSF indicate that a 
minimal increase in CSF production oc­
curs in FeLV-GMl infection. A hypothe­
sis worth further investigation is that in­
fection of bone marrow precursor cells 
can lead to autocrine stimulation ofGM­
CFC. 

Studies with the molecularly cloned 
viruses indicted that the subgroup A 
component of FeLV-GMl could repro­
duce the early proliferation ofGM-CFC. 
Similarly we have previously shown that 
another subgroup A virus, FeLV-Glas­
gow/l, can produce a lesser but signifi­
cant increase in GM-CFC numbers soon 
after infection [7]. FeLV-Glasgow/l is 
less rapidly oncogenic than FeLV-GMl 
but has produced myeloid leukaemia in 
some cases. 

In those cats that developed myeloid 
leukaemia a clonal pattern of proviral in­
tegration was observed in the bone mar­
row. In Friend virus-induced myelobhis­
tic leukaemias three distinct proviral 
integration sites, the Jim loci, have been 
identified, one of which, Jim-2, spans the 
5' end of the c-fms gene [8]. In the 
leukaemic cats we have not detected rear­
rangement of the c-Jms gene, but we can­
not preclude a proviral integration some 
distance from this locus. 

The role of the subgroup B virus in the 
secondary leukaemogenic events remains 
unresolved. One possibility is that it is 



involved in overcoming viral interference 
in preleukaemic cells that are already in­
fected with subgroup A [9]. FeLV sub­
groups are defined by viral interference 
so that a cell infected by subgroup A can­
not be superinfected with the same sub­
group but is susceptible to subgroup B 
infection. Consequently the initial events 
may be dependent on subgroup A virus 
while secondary events require the pres­
ence of the subgroup B virus. 
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